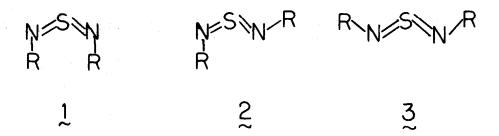
GEOMETRICAL ISOMERISM OF SULFUR DIIMIDES


John R. Grunwell, Charles F. Hoyng, and John A. Rieck

Department of Chemistry, Hughes Laboratories

Miami University, Oxford, Ohio 45056

(Received in USA 5 February 1973; received in UK for publication 21 May 1973)

The problem of geometrical isomerism in sulfur di-imides is indicated by previous results 1-4. If nitrogen and sulfur are assumed sp² hybridized, then three isomers - <u>cis</u>, <u>cis</u> (1), cis, trans (2), and trans, trans (3) - are possible. The nmr spectra of di-t-butylsulfur di-imide (4)

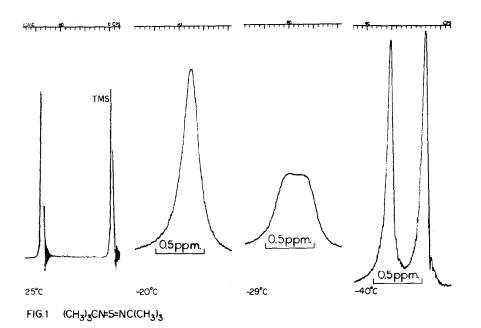
and dimethylsulfur di-imide (5) have been reported as a sharp single line at ambient (~25°) temperature^{5, 6}. This observation is consistent with structures 1 and 3 unless the R groups exchange rapidly at ambient temperature by either inversion at nitrogen and/or rotation around the nitrogen sulfur bond. Our calculations on 5 show a small barrier (< 10 kc/m) for each of the exchange mechanisms¹.

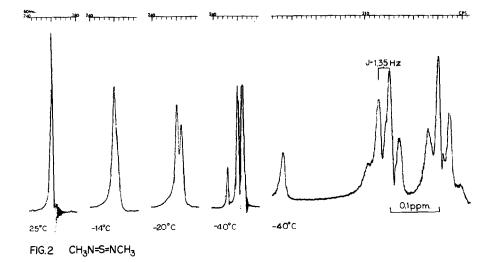
We wish to report the low temperature nmr spectra for $\frac{4}{2}$ and $\frac{5}{2}$. The spectra, which were run in chlorodifluoromethane as solvent and TMS as internal standard, are shown in fig. 1 and 2. The di-imides $\frac{4}{2}$ and $\frac{5}{2}$ were prepared by previously reported methods^{5, 7}.

As a sample of $\underline{4}$ is cooled the sharp resonance of the t-butyl protons broadens and at -29° divides into two signals, which are completely separated into lines of equal intensity at -40°.

At low temperatures the t-butyl groups are in two equally populated but magnetically nonequivalent magnetic environments, a result which is consistent for either the sole existence of isomer 2 or a fortuitous mixture of equal amounts of 1 and 3.

Cooling a sample of ξ causes the sharp line at 3.5 f due to the methyl protons to broaden. At -20.5° the single resonance divides into two signals of unequal intensity. As the temperature is lowered further the two signals become equal in intensity and a third signal emerges downfield from the first two resonances. At -60° the lines of equal intensity are resolved into an A₃B₃ pattern and the third line is a singlet. The A₃B₃ pattern shows two quartets of coupling constant J = 1.5 Hz which is consistent with long range coupling between two nonequivalent methyl groups. When the sample is allowed to warm up the three lines collapse to a single resonance.


The coupled resonances are assigned to isomer 2 and the singlet resonance at 3.7 is one of the two symmetrical isomers λ or 3, although based on our CNDO/2 calculations¹ and chemical intuition the resonance is due to 3, probably.


Clearly, the <u>cis</u>, <u>trans</u> isomer 2 is the most stable of the three possible geometrical isomers in solution for R equal to methyl and t-butyl. The same result was obtained for R equals 4-tolyl by others² using X-ray crystallography.

We wish to thank Professor John Sebastian for running spectra and other assistance

References

1.	J. R. Grunwell and W. C. Danison, <u>Tet.</u> , <u>27</u> , 5315(1971).
2.	G. Leandri, V. Busetti, G. Valle, and M. Mammi, Chem. Comm. 413(1970).
3.	J. L. Downie, R. Maruca, and J. R. Grunwell, Chem. Comm., 298(1970).
4.	J. R. Grunwell and A. Kochan, J. Org. Chem., in press.
5.	D. H. Clemens, A. J. Bell, and J. L. O'Brien, <u>Tet.</u> <u>Let.</u> , 1487(1965).
6.	R. Appel and J. Kohnke, Chem. Ber. 104, 2648-2649(1971).
7.	B. Cohen and A. G. MacDiarmid, Angew. Chem. 75, 207(1963).

